Difference between revisions of "OpenTasks"
(→XMIDI parser: added some more info on XMidi) |
m (typos) |
||
Line 18: | Line 18: | ||
=== Some good advice === | === Some good advice === | ||
The PostgrSQL folks have some real good | The PostgrSQL folks have some real good | ||
[http://www.postgresql.org/developer/summerofcodeadvice.html Advice to Students on Submitting SoC Applications]. We | [http://www.postgresql.org/developer/summerofcodeadvice.html Advice to Students on Submitting SoC Applications]. We recommend all students interested in applying with us (or any other SoC project, for that matter) to read this. | ||
=== Student application template === | === Student application template === | ||
Line 70: | Line 70: | ||
Details, scope and further suggestions as to how to achieve this can be found on the [[Small Devices Backend]] page. | Details, scope and further suggestions as to how to achieve this can be found on the [[Small Devices Backend]] page. | ||
Besides this, | Besides this, optimizing code for speed and memory usage benefits all our targets. In particular these "small devices". Hence doing this is a worthy goal on its own. | ||
''Required Skills:'' | ''Required Skills:'' | ||
Line 83: | Line 83: | ||
''Background:'' | ''Background:'' | ||
ScummVM is a highly portable application, running on a multitude of devices, ranging from desktop PCs running Linux, Mac OS X, Windows and other systems, over game consoles like the | ScummVM is a highly portable application, running on a multitude of devices, ranging from desktop PCs running Linux, Mac OS X, Windows and other systems, over game consoles like the PlayStation or the Nintendo DS, down to small mobile devices like PDAs and smartphones running PalmOS, WinCE or Symbian. One key component which makes this possible is our relatively strict separation between "backend code" (which implements the device specific functionality, like graphics drawing or sound output), and "frontend code" (which implements support for certain games). These two parts are held together by a bit of middle layer code. The key API for all backends is the [http://scummvm.org/docs/doxygen/html/classOSystem.php OSystem class] (you can use it as a great starting point to figure out most of the rest of the backend API). | ||
Two key components of the backend API are the game graphics (used for drawing the game graphics, surprise surprise), which are currently limited to 8bit palette mode, and the overlay graphics (used to e.g. draw the GUI, and currently either 16bit or 8bit palette, fixed at compile time). For the overlay API, it would be nice if we could support arbitrary graphics modes, e.g. also 24/32bit modes. | Two key components of the backend API are the game graphics (used for drawing the game graphics, surprise surprise), which are currently limited to 8bit palette mode, and the overlay graphics (used to e.g. draw the GUI, and currently either 16bit or 8bit palette, fixed at compile time). For the overlay API, it would be nice if we could support arbitrary graphics modes, e.g. also 24/32bit modes. | ||
Line 91: | Line 91: | ||
''The Task:'' | ''The Task:'' | ||
Get rid of the evil gBitFormat variable. Instead, introduce a new Graphics::PixelFormat struct (modeled after [http://www.libsdl.org/cgi/docwiki.cgi/SDL_5fPixelFormat SDL_PixelFormat]). Enhance Graphics::Surface to use it ( | Get rid of the evil gBitFormat variable. Instead, introduce a new Graphics::PixelFormat struct (modeled after [http://www.libsdl.org/cgi/docwiki.cgi/SDL_5fPixelFormat SDL_PixelFormat]). Enhance Graphics::Surface to use it (similar to [http://www.libsdl.org/cgi/docwiki.cgi/SDL_5fSurface SDL_Surface]). Add a new getOverlayPixelFormat method to OSystem, and implement it in the SDL backend. Rewrite the GUI code and other code accessing the overlay to make use of the PixelFormat data, instead of using gBitFormat. This also includes updating some of the scalers (at least the simple ones; for the special ones, like HQ2x, we have to determine how to treat them best). | ||
For all this, API flexibility has to be carefully weight against API complexity, and efficiency -- since we have to support small devices with limited resources, we don't want to needlessly waste CPU cycles nor memory. | For all this, API flexibility has to be carefully weight against API complexity, and efficiency -- since we have to support small devices with limited resources, we don't want to needlessly waste CPU cycles nor memory. | ||
Line 150: | Line 150: | ||
''The Task:'' | ''The Task:'' | ||
Specifically, we require support for XMIDI_CONTROLLER_FOR_LOOP and XMIDI_CONTROLLER_NEXT_BREAK. There are many more XMIDI controllers, however, and ideally support for all would | Specifically, we require support for XMIDI_CONTROLLER_FOR_LOOP and XMIDI_CONTROLLER_NEXT_BREAK. There are many more XMIDI controllers, however, and ideally support for all of them would be great. Some references: | ||
* The XMIDI code from the [http://exult.sf.net Exult] project (see Exult's audio/midi_drivers/XMidiSequence.cpp) could be used as a reference again. | * The XMIDI code from the [http://exult.sf.net Exult] project (see Exult's audio/midi_drivers/XMidiSequence.cpp) could be used as a reference again. | ||
* In addition, [http://pentagram.sf.net Pentagram] has XMidi code based on the Exult code, but | * In addition, [http://pentagram.sf.net Pentagram] has XMidi code based on the Exult code, but may be cleaner (see [http://pentagram.svn.sourceforge.net/viewvc/pentagram/pentagram/trunk/audio/midi/ here].) | ||
* Another good reference for this task is the AIL library which has been recently open-sourced by its [http://www.thegleam.com/ke5fx/ author]. This is infact where XMIDI comes from, and it even contains specs. To find them, unzip AIL2.ZIP; in there you find A214_D2.ZIP, which when unzipped contains a dir DOC, which in turn contains ASCIIDOC.ZIP, which then contains XMIDI.TXT and some other files which might be of use (e.g. NOTES.TXT). | * Another good reference for this task is the AIL library which has been recently open-sourced by its [http://www.thegleam.com/ke5fx/ author]. This is infact where XMIDI comes from, and it even contains specs. To find them, unzip AIL2.ZIP; in there you find A214_D2.ZIP, which when unzipped contains a dir DOC, which in turn contains ASCIIDOC.ZIP, which then contains XMIDI.TXT and some other files which might be of use (e.g. NOTES.TXT). | ||
Revision as of 13:19, 10 July 2008
This page contains a list of open tasks. Completing any of them would benefit the ScummVM project a lot. At least in theory, all of them should be doable even by somebody relatively new to the project, in particular, as part of the Google Summer of Code. Besides the tasks listed here, there is of course also the TODO page listing more things that need to be done (but with far less details).
Introduction
Some basic rules
Below follow some basic rules that anybody interested in one of these tasks should adhere to. Sometimes exceptions may be possible -- as always, common sense applies, and if in doubt, ask.
The projects below are sketches and ideas. Plus, things evolve over time, so the descriptions might be slightly outdated by the time you read them (although we strive to keep them up-to-date). Hence, you should talk with somebody from the team, probably the person(s) listed as Tech Contact, before starting work on any of them.
All code, unless stated differently, must be written in clean and portable C++, in particular, GCC must be able to compile it (portability exceptions can be made for platform specific code, of course). We also have some Code Formatting Conventions. Using the standard C++ lib for code used inside ScummVM is at this time not possible. Using it inside non-essential tool should be fine, though.
All of the code submitted must be contributed under the terms of the GPL v2.
We only accept clean and maintainable code. This is a somewhat vague requirement, but as a rule of thumb, if the code does what it is supposed to do, but is not extensible, a quick hack, or we need to rewrite it from scratch to properly integrate it, we will not accept it. In particular, we would rather have a maintainable, clean and incomplete piece of code that we could extend than a complete but unmaintainable piece of code.
Some good advice
The PostgrSQL folks have some real good Advice to Students on Submitting SoC Applications. We recommend all students interested in applying with us (or any other SoC project, for that matter) to read this.
Student application template
The following was adapted from the FreeBSD Proposal Guidelines.
- Name
- Project Title
- Possible Mentor (optional)
- Benefits to the ScummVM Community - a good project will not just be fun to work on, but also generally useful to others.
- Deliverables - It is very important to list quantifiable results here e.g.
- "Improve X modules in ways Y and Z."
- "Write 3 new man pages for the new interfaces."
- "Improve test coverage by writing X more unit/regression tests."
- "Improve performance in FOO by X%."
- Project Schedule - How long will the project take? When can you begin work?
- Availability - How many hours per week can you spend working on this? What other obligations do you have this summer?
- Bio - Who are you? What makes you the best person to work on this project?
Your task
Anything you can dream of
Technical Contact: Our IRC channel, our mailing list, or contact Eugene Sandulenko, Max Horn
The Task:
Come up with your personal clever way to improve ScummVM and its various side projects. Be creative. Incorporate the ideas listed below and in our TODO, but don't let yourself be limited by them. Come up with something totally new, or enhance existing features. It's up to you.
But of course like with all the other tasks, we recommend that you first talk to us (see above).
Generic infrastructure tasks
Small Devices Backend
Technical Contact: John Willis, Joost Peters
Background:
ScummVM has been ported to many platforms, often by simply re-using the SDL backend (which is based on SDL, which by itself has been ported to many platforms, making it fairly easy to port ScummVM to any of these platforms).
But for some platforms, dedicated backends are required, either because SDL doesn't support them, or because we can't achieve all our needs by using the SDL port (e.g. because we need more speed, more control, etc.). These backends are typically made for what we call "small systems" -- systems like PDAs, SmartPhones, Linux Tablets (PalmOS, SymbianOS, Windows CE, Maemo), or game consoles (Dreamcast, GP2X, Nintendo DS, PlayStation 2, PlayStation Portable).
These systems share many features. In particular they often have no (full) keyboard and quite limited resources: Little RAM, little permanent storage space, not that much CPU power, or a limited screen resolution.
This makes it often necessary to (re)implement certain functionality, like virtual keyboards (see above task), or graphic downscalers and the like.
The Task:
Since the same needs occur again and again, it would be nice to implement such functionality only once in a sufficiently portable and flexible way, making it possible for backends to pick and use whatever they need.
Details, scope and further suggestions as to how to achieve this can be found on the Small Devices Backend page.
Besides this, optimizing code for speed and memory usage benefits all our targets. In particular these "small devices". Hence doing this is a worthy goal on its own.
Required Skills:
- Reasonable C++ skills.
- Refactoring skills.
- Knowledge of one or more ScummVM platform backends is desirable.
Improve the overlay API
Technical Contact: Max Horn
Background:
ScummVM is a highly portable application, running on a multitude of devices, ranging from desktop PCs running Linux, Mac OS X, Windows and other systems, over game consoles like the PlayStation or the Nintendo DS, down to small mobile devices like PDAs and smartphones running PalmOS, WinCE or Symbian. One key component which makes this possible is our relatively strict separation between "backend code" (which implements the device specific functionality, like graphics drawing or sound output), and "frontend code" (which implements support for certain games). These two parts are held together by a bit of middle layer code. The key API for all backends is the OSystem class (you can use it as a great starting point to figure out most of the rest of the backend API).
Two key components of the backend API are the game graphics (used for drawing the game graphics, surprise surprise), which are currently limited to 8bit palette mode, and the overlay graphics (used to e.g. draw the GUI, and currently either 16bit or 8bit palette, fixed at compile time). For the overlay API, it would be nice if we could support arbitrary graphics modes, e.g. also 24/32bit modes.
The current overlay API is rather inflexible when it comes to supporting different modes. Most code assumes that the overlay is in 16 bit mode. For 8bit mode, a compile time switch has to be used, and supporting 24/32bit mode is virtually impossible. Furthermore, which variant of 16bit mode is determined through an ugly global variable gBitFormat
(set by the InitScalers() function in graphics/scaler.cpp
): This variable is set to values like 555, 565 to indicate the 16bit mode variant (555 meaning that 5 bits are used for each color component, while 565 means 5bits for red, 6 for green, 5 for blue). Some systems use other modes, like 1555, 4444, or even use BGR instead of RGB. For 32bit modes, things are even more complicated.
The Task:
Get rid of the evil gBitFormat variable. Instead, introduce a new Graphics::PixelFormat struct (modeled after SDL_PixelFormat). Enhance Graphics::Surface to use it (similar to SDL_Surface). Add a new getOverlayPixelFormat method to OSystem, and implement it in the SDL backend. Rewrite the GUI code and other code accessing the overlay to make use of the PixelFormat data, instead of using gBitFormat. This also includes updating some of the scalers (at least the simple ones; for the special ones, like HQ2x, we have to determine how to treat them best).
For all this, API flexibility has to be carefully weight against API complexity, and efficiency -- since we have to support small devices with limited resources, we don't want to needlessly waste CPU cycles nor memory.
Also, the PixelFormat code and its usage have to be documented (using Doxygen comments, and maybe a concept document), as our porters will have to implement these changes, and it must be as clear and easy as possible for them to do so.
Required Skills:
- Good C++ skills.
- Refactoring skills.
- Knowledge of one or more ScummVM platform backends is desirable.
Improve sound support in SCUMM games
Technical Contact: Eugene Sandulenko, Travis Howell
- Add support for sound format (SID format?) used by Commodore 64 versions of Maniac Mansion and Zak McKracken to SCUMM engine. Unfortunately there is no demo versions are available, so you need to own one of the games.
- Add support for sound format used by Macintosh version of Loom to SCUMM engine. Known information about the structure of the sound resources used is available. If you don't own the game, the LucasArts Mac CD Game pack is usually available via eBay.
MIDI enhancements
Many of the adventures supported by ScummVM make use of MIDI music. Which is why we already include several device drivers for various MIDI APIs and emulators (e.g. ALSA, Windows MIDI, Mac OS X CoreAudio/CoreMIDI, fluidsynth...).
MIDI device configuration
Technical Contact: Max Horn
Background:
Right now, the MIDI drivers are treated by ScummVM in a rather single minded fashion: Either a driver is linked in and hence "available", or not. It's not possible to configure anything about them (like ports to be used etc.), nor does it ever take into account that a single driver might correspond to multiple devices (after all, you can plug several sequencers into your MIDI port; or you could have configured several different sound font settings in your MIDI emulator).
The Task:
- Add an API for querying the OSystem backend for a list of available MIDI devices (not drivers)
- Information about the selected device must be serializable, so that it can be stored in the config file
- Selection of devices via command line should be possible
- It must deal with devices being added/removed (at least between runs of ScummVM, ideally also while ScummVM is running)
- Devices should be configurable via the GUI; this needs to be done in a flexible (different devices/drivers offer different settings) and portable fashion.
Accolade MIDI parser
Technical Contact: Travis Howell
Background:
The Elvira 1 (DOS), Elvira 2 (DOS), Waxworks (DOS) games of the AGOS engine use the Accolade MIDI format for music. The current parser (see engines/agos/midiparser_s1d.cpp), is based off looking at the music in the DOS Floppy Demo of Simon the Sorcerer 1 (Which was based Waxworks engine) and guess work. The current code frequently crashes when changing locations in Waxworks, due to invalid MIDI data been passed along.
The Task:
Updated the current parser, to completely support the Accolade MIDI format used by these games. There are already comments in the current code, about where each additional MIDI event is triggered in the music of these games.
XMIDI parser
Technical Contact: Max Horn
Background:
Several of our games make use of the XMIDI format. We already have a parser for it (see sound/midiparser_xmidi.cpp), which was based on code from the Exult project, but it is incomplete.
The Task:
Specifically, we require support for XMIDI_CONTROLLER_FOR_LOOP and XMIDI_CONTROLLER_NEXT_BREAK. There are many more XMIDI controllers, however, and ideally support for all of them would be great. Some references:
- The XMIDI code from the Exult project (see Exult's audio/midi_drivers/XMidiSequence.cpp) could be used as a reference again.
- In addition, Pentagram has XMidi code based on the Exult code, but may be cleaner (see here.)
- Another good reference for this task is the AIL library which has been recently open-sourced by its author. This is infact where XMIDI comes from, and it even contains specs. To find them, unzip AIL2.ZIP; in there you find A214_D2.ZIP, which when unzipped contains a dir DOC, which in turn contains ASCIIDOC.ZIP, which then contains XMIDI.TXT and some other files which might be of use (e.g. NOTES.TXT).
Tools
Tools: Create a great user interface for the compression tools
Technical Contact: Max Horn
Background:
We offer a multitude of command line tools in a separate package (scummvm-tools). The majority of these tools are used to (re)compress audio data. This greatly helps users who want to play their games on devices with limited storage, like PDAs and smart phones.
The user can choose between MP3, Ogg Vorbis and (in those cases where it makes sense) FLAC compression. The tools take the original data files, extract sound data, compress them, and reassemble everything into new (smaller) data files.
The Task:
Right now, those tools are mainly for command line users. Needless to say, this makes it very difficult to use for many people who just want to play a game, and who do not have a strong technical background.
During GSoC 2007, progress was made in unifying the internal code of these tools (mainly the compression tools). Also a basic GUI wrapper using wxWidget was added, as a first step towards making the tools usable for non-experts. However, this wrapper is right now a very thin shell around the true complexity of the tools.
Your task would be to turn this GUI tool into a truly amazing and portable tool (usable on Linux, Windows and Mac OS X at least, ideally on more) which would be very easy to use for beginners, yet offers (optionally) the full power of the compression tools for experts.
In particular, the user should be able to just drop a file onto the tool icon (or one of its windows), the tool would detect which game it is looking at, and offer a simple "one-click-and-done" start button to the user. Optionally, the user could tweak his default settings before starting the conversion (like choosing a different compression level, a custom output directory, etc.). The GUI would be very forgiving to the user (e.g. if selecting data from a read-only media or a directory with not enough free space, it would automatically ask the user for an alternate output location of the generated files. It would upon startup show a nice friendly window with instructions on how to use it, etc.). The exact desired feature set would have to be determined at the start of the project, in discussions with the ScummVM team members and users on our forums. This would be turned into a rough set of mockups and/or texts describing the planned features. Many ideas for what could be done here already exist, but you are most welcome to also develop and contribute your own!
Engine/game specific
Objectify CinE engine
Technical Contact: Eugene Sandulenko
Background:
The cinE engine started out as an external project started by Yaz0r. Originally it was written in plain C. ScummVM is a C++ project, so we need to objectify this engine without changing/breaking its behavior.
The engine itself is well-structured, hence many functions / variables which might be good candidates for being grouped together into a C++ class are already grouped by files.
No deep knowledge of the engine internals is required, but in any case the Engine is not that big, and thus it should be possible to learn enough about it to start working in a relatively short amount of time.
We have previously "objectified" several other engines, namely SAGA, Gob and AGI, so one can learn a lot about various approaches how to do this by tracing through our SVN repository.
As a bonus you may consider finishing support for Operation Stealth game, but this task has much higher complexity.
Objectify CruisE engine
Technical Contact: Eugene Sandulenko
Background:
The cruisE engine also started out as an external project started by Yaz0r. Originally it was written in plain C. ScummVM is a C++ project, so we need to objectify this engine without changing/breaking its behavior. The engine is fairy complete, but also suffers from portability problems, that is it works correctly only under little-endian, alignment-agnostic CPUs.
The engine itself is well-structured, hence many functions / variables which might be good candidates for being grouped together into a C++ class are already grouped by files.
No deep knowledge of the engine internals is required too.
We have previously "objectified" several other engines, namely SAGA, Gob and AGI, so one can learn a lot about various approaches how to do this by tracing through our SVN repository.
Add 16bit graphics support to SCUMM engine
Technical Contact: Travis Howell, Eugene Sandulenko
Background:
The SCUMM engine was originally developed for palette-based graphics. At version 6 it was forked by Humongous Entertainment, which extended it significantly. Their later games started to use 16bit graphics for backgrounds and actors. See here for more detailed information.
This task requires good knowledge of C++, as we need a solution which will not clobber our code, will have minimal impact on 8bit games, and can be optionally turned off at compilation stage.
If you don't have any of the required games, there are several demos available. A 16bit graphics demo example would be the Freddi5 demo.